Mini-Z, Kyosho Mini-Z Racer, MR-03, MR-02, MA-010, Forums, News, Pictures, Parts, and Shop - Mini-ZRacer.com
Forums, Mini-Z, MiniZ, Kyosho Mini-Z, Kyosho MiniZ, Kyosho Mini-Z Racer
Mini-Z Hop-Ups, Mini-Z Parts, MiniZ Hop-Ups, MiniZ Parts, Kyosho Mini-Z Hop-Ups, Kyosho Mini-Z Parts, Kyosho MiniZ Hop-Ups, Kyosho MiniZ Parts, Kyosho Mini-Z Racer Hop-Ups, Racer Kyosho Mini-Z Parts
Old 2008.03.26, 10:48 PM   #1
herman
Registered User
 
Join Date: Nov 2001
Location: makati, philippines
Posts: 8,702
what is toe in / toe out?

Toe-in is the angle of the wheels as looked at from directly above the car.

When the wheels are parallel the toe-in is 0-degrees.

When the front of the wheels are pointing away from each other, that is called toe-out.

When the front of the wheels are pointing in towards each other, that is called toe-in.

Toe-in is used to stabilize the car at cost of traction. In case of oversteer (the rear end losing traction before the front end does) extra toe-in on the front may take some oversteer away but also some steering. In case of understeer (the front end losing traction before the rear end does) some toe-in on the rear may help, but this makes on-power cornering a little more difficult.

Front toe-in will make your car easier to drive by improving stability during
acceleration, and gives a slight increase in steering exiting corners.

Front toe-out will increase steering when entering corners but will be slightly more difficult to drive.



source:http://www.teamxray.com/teamxray/pro...c3036456c36e0a
herman is offline   Reply With Quote
Old 2008.03.27, 10:58 PM   #2
herman
Registered User
 
Join Date: Nov 2001
Location: makati, philippines
Posts: 8,702
in mini-z terms...

in the mr015 or mr02, this can be achieved by replacing the stock tie rod with one that offers toe in / toe out option like the one below
available in 0 degree, toe out -0.5 degree, -1.0 degree, toe in +0.5 degree, +1.0 degree

Last edited by herman; 2008.03.27 at 11:03 PM.
herman is offline   Reply With Quote
Old 2008.03.28, 03:30 PM   #3
Action B
The Galliant Dude
 
Join Date: Mar 2008
Location: Northern VA
Posts: 920
I'm new to mini-z. I'm not saying that your wrong, but rather that I don't understand fully. Logically, I feel that Toe in (in the front) increases turning capabilities at the cost of straight line stability. In my mind, as you turn, weight shift towards the outside wheels. From this assumption I think... hmm.. common physics, friction formula ( force of friction= coefficient of friction x force of gravity). In this case, the outside wheel has more weight on it, and therefore a higher force of friction. If it has a higher force of friction, then it is doing the majority of the work to make the car turn. If this is the case, then in toe-in, most of the work is being done by the wheel that is more sharply turned (outside relative to turn) and therefore increases turning capabilities.

However, I'm a biologist not a physicist, let me know whats up with this!


Also, there is a vast amount of information stating that toe-in does increase cornering at the expense of straight line high speed stability. For instance off atomicmods site:

Team AtomicMods Comments:Toe in makes the steering more responsive and cornering more agressive, at the cost of straight line tracking and stability, while toe out does the opposite. For the best results, tune your car for the track you are racing on. Lots of curves, you need more toe in, more straights, go towards toe out. I keep one of each size in my track bag so I can dial in my car to match the track. - Rob

Back of the XMods suspension upgrade:

Toe-In Degree Usage
1.5 Straight stretches and speed
3.0 Some straight stretches and curves
4.5 Tight and curvy roads

That being said, I've also seen evidence of your explanation on the web, but it doesnt make much sense to me... Can anyone clear this up?

Last edited by Action B; 2008.03.28 at 03:33 PM.
Action B is offline   Reply With Quote
Old 2008.03.28, 05:32 PM   #4
mleemor60
Curmudgeon & Moderator
 
mleemor60's Avatar
 
Join Date: Jan 2008
Location: Kannapolis, NC
Posts: 2,549
Quote:
Originally Posted by Action B View Post
I'm new to mini-z. I'm not saying that your wrong, but rather that I don't understand fully. Logically, I feel that Toe in (in the front) increases turning capabilities at the cost of straight line stability. In my mind, as you turn, weight shift towards the outside wheels. From this assumption I think... hmm.. common physics, friction formula ( force of friction= coefficient of friction x force of gravity). In this case, the outside wheel has more weight on it, and therefore a higher force of friction. If it has a higher force of friction, then it is doing the majority of the work to make the car turn. If this is the case, then in toe-in, most of the work is being done by the wheel that is more sharply turned (outside relative to turn) and therefore increases turning capabilities.

However, I'm a biologist not a physicist, let me know whats up with this!


Also, there is a vast amount of information stating that toe-in does increase cornering at the expense of straight line high speed stability. For instance off atomicmods site:

Team AtomicMods Comments:Toe in makes the steering more responsive and cornering more agressive, at the cost of straight line tracking and stability, while toe out does the opposite. For the best results, tune your car for the track you are racing on. Lots of curves, you need more toe in, more straights, go towards toe out. I keep one of each size in my track bag so I can dial in my car to match the track. - Rob

Back of the XMods suspension upgrade:

Toe-In Degree Usage
1.5 Straight stretches and speed
3.0 Some straight stretches and curves
4.5 Tight and curvy roads

That being said, I've also seen evidence of your explanation on the web, but it doesnt make much sense to me... Can anyone clear this up?
What is missing from the formula is something that Mini-Zs dont have. Ackerman steering. In plain english, Ackerman is how much more one wheel turns than the other from 0 to full lock. Without it you have to exagerate the toe settings to compensate. A little toe out helps the car into the corner by dragging the inside tire into the turn taking load off the outside tire. It's really a lot more complicated than that because caster as well as camber start to come into play. In another life I was a front end man and I still don't understand all there is to know about it. In the old days with bias ply tires if the front end wasn't toed in the car could be very unstable to drive. With the advent of radial tires and different rolling resistances the opposite applied.
It is quite a can of worms. My personal Z set up is -3 camber, -.5 caster and zero toe. Allowing for the normal slop in the tie rod it will set up a little toed out. It is different for everybody. A matter of feel and comfort.
mleemor60 is offline   Reply With Quote
Old 2008.03.28, 07:13 PM   #5
Action B
The Galliant Dude
 
Join Date: Mar 2008
Location: Northern VA
Posts: 920
It still seems odd to me, I feel that the weight transfer must be massive as these arent regular cars, they are crazy fast to scale, turning can even frequently flip many cars with ease, meaning the inside tire (especially with ball bearing differentials) would hardly be used. Can anyone elaborate any more on this?
Action B is offline   Reply With Quote
Old 2008.03.29, 10:53 AM   #6
mleemor60
Curmudgeon & Moderator
 
mleemor60's Avatar
 
Join Date: Jan 2008
Location: Kannapolis, NC
Posts: 2,549
I build a little droop, usually .020 thousandths so as the car turns in and tries to lift the inside front it doesn't lose contact with the track. Droop also helps on an irregular surface by allowing the wheels to follow the surface. Also, alot of the steering control is done from the rear of the car through the Damper Plate System. Friction and spring rate control the chassis roll rate sort of like a sway(anti roll) bar. Check out reflexracing.net for good tutorials on this and many other items. In my opinion, they are best and most helpful outfit out there. They have been really great to me.

Crusty
mleemor60 is offline   Reply With Quote
Old 2008.05.24, 09:24 PM   #7
bmxtrev
MidWest Racers
 
bmxtrev's Avatar
 
Join Date: Jan 2008
Location: Wisconsin
Posts: 410
Send a message via AIM to bmxtrev Send a message via MSN to bmxtrev
on the kyosho instructions that come with the tie rod set, it is stated that as the toe-in increases, stability increases. i also think this is true based on my own experiences. But with more toe in, you have a little less steering in general.

i think rob made an error when he wrote his comment about toe in and toe out. If toe out does the opposite of toe-in, then toe out would increase straight line stability. But how would 2 wheels that are fighting to go in their own direction increase straight line stability?

I really dont trust anything that has the word xmod in it. when i got the xmod tierod set, i figured they made a mistake.
__________________
Team MwR
ReflexRacing

Last edited by bmxtrev; 2008.05.24 at 09:30 PM.
bmxtrev is offline   Reply With Quote
Old 2008.05.25, 09:58 PM   #8
andreophile
Left Foot Braker
 
andreophile's Avatar
 
Join Date: Nov 2007
Location: Bombay, India
Posts: 208
Quote:
Originally Posted by Action B
From this assumption I think... hmm.. common physics, friction formula (force of friction= coefficient of friction x force of gravity).
Nope, you got that partially right, but technically it still is incorrect. The frictional force is a product of the coefficient of friction (µ) with the normal reaction force (R). In a state of equilibrium (and also in a dynamic state), the normal reaction force is equal to the weight of the car, as long as no other force acts vertically. Note: weight is a product of mass and gravity. However, if any other force acts along the Y-axis (like aerodynamic downforce for eg.), your equation won't hold true. That's why friction is considered as a product of the normal reaction force with the coefficient of friction, and isn't specifically equated in terms of gravity.

__________________
.
Traction is a double edged sword; master it and you can cut God

Last edited by andreophile; 2008.05.26 at 08:26 AM.
andreophile is offline   Reply With Quote
Old 2008.05.26, 11:31 AM   #9
bmxtrev
MidWest Racers
 
bmxtrev's Avatar
 
Join Date: Jan 2008
Location: Wisconsin
Posts: 410
Send a message via AIM to bmxtrev Send a message via MSN to bmxtrev
lol, i just read the instructions
__________________
Team MwR
ReflexRacing
bmxtrev is offline   Reply With Quote
Old 2008.05.28, 09:10 AM   #10
andreophile
Left Foot Braker
 
andreophile's Avatar
 
Join Date: Nov 2007
Location: Bombay, India
Posts: 208
I played around with five different toe settings today from +2.3° (toe in) to -0.6° (toe out). I practically verified with my MA-010 what's common knowledge about toe settings. That is, real car toe characteristics work out identically for the Mini-Z too. Here's what I've verified:


Then I tested how the turning radius is affected at the extremes of toe settings (refer image below; click to enlarge). The steering dual rate was set at 90% and I crawled the car at maximum lock. Surprisingly, I found the turning radius to be shorter for toe-in than for toe-out.

__________________
.
Traction is a double edged sword; master it and you can cut God
andreophile is offline   Reply With Quote
Old 2008.05.29, 06:19 PM   #11
Action B
The Galliant Dude
 
Join Date: Mar 2008
Location: Northern VA
Posts: 920
Quote:
Originally Posted by andreophile View Post
Nope, you got that partially right, but technically it still is incorrect. The frictional force is a product of the coefficient of friction (µ) with the normal reaction force (R). In a state of equilibrium (and also in a dynamic state), the normal reaction force is equal to the weight of the car, as long as no other force acts vertically. Note: weight is a product of mass and gravity. However, if any other force acts along the Y-axis (like aerodynamic downforce for eg.), your equation won't hold true. That's why friction is considered as a product of the normal reaction force with the coefficient of friction, and isn't specifically equated in terms of gravity.

yeah, sure, I was trying to simplify some to make it understandable by everyone the basic concept. I realize that force of gravity should be replaced with 9.81 m/s acceleration force (roughly) times the mass(in Kg) plus any other factors that would effect it such as downforce. Not everyone here knows what your talking about specifically, however, I appreciate your attention to detail and the tests you did. I am a biologist so I'm going off memory from the two semesters of physics I did over a year ago anyhow.

There are several people on here that have never taken a physics class and personally I wouldn't recommend it. Just read my post for the general idea.

What I'm trying to say is that your a superior being of higher intelligence and thanks for correcting me lol

Last edited by Action B; 2008.05.29 at 06:30 PM.
Action B is offline   Reply With Quote
Old 2008.05.30, 01:29 AM   #12
andreophile
Left Foot Braker
 
andreophile's Avatar
 
Join Date: Nov 2007
Location: Bombay, India
Posts: 208
@ Action B: Nah, it's not about anyone being super intellingent here, nor does my post mean to 'correct' yours, because, like I've already stated, you are practically correct.

I posted that for an academic purpose and most importantly because these threads are a part of the massive Mini-Z information archive. Having studied biology, it's obvious that you're well versed with such basic stuff, but the same might prove useful for a complete layman reading this thread.

Then again, I'd created this diagram to eplain how the Mini-Z shares the same handling dynamics as a real car on another forum. So I was just tempted to use it again
__________________
.
Traction is a double edged sword; master it and you can cut God
andreophile is offline   Reply With Quote
Old 2008.10.01, 01:00 PM   #13
marc
Honda Insight Racer!
 
Join Date: Oct 2003
Location: Colorado, USA!
Posts: 6,399
Send a message via AIM to marc Send a message via MSN to marc
Quote:
Originally Posted by andreophile View Post
Nope, you got that partially right, but technically it still is incorrect. The frictional force is a product of the coefficient of friction (µ) with the normal reaction force (R). In a state of equilibrium (and also in a dynamic state), the normal reaction force is equal to the weight of the car, as long as no other force acts vertically. Note: weight is a product of mass and gravity. However, if any other force acts along the Y-axis (like aerodynamic downforce for eg.), your equation won't hold true. That's why friction is considered as a product of the normal reaction force with the coefficient of friction, and isn't specifically equated in terms of gravity.

Um..........what was that you said Bill Nye?
marc is offline   Reply With Quote
Old 2008.10.01, 01:08 PM   #14
ruf
4play
 
ruf's Avatar
 
Join Date: Nov 2001
Location: Reflex Racing, everywhere
Posts: 2,602
Quote:
Originally Posted by andreophile View Post
I played around with five different toe settings today from +2.3° (toe in) to -0.6° (toe out). I practically verified with my MA-010 what's common knowledge about toe settings. That is, real car toe characteristics work out identically for the Mini-Z too. Here's what I've verified:


Then I tested how the turning radius is affected at the extremes of toe settings (refer image below; click to enlarge). The steering dual rate was set at 90% and I crawled the car at maximum lock. Surprisingly, I found the turning radius to be shorter for toe-in than for toe-out.

Neat picture! You probably found toe-in to have a slightly tighter turning radius due to the geometry of the steering rack. Toe-in implies that the outer tire is already turned into the corner slightly. This continues to full lock, and if you look closely you can actually see that the outside tire has a larger steering angle on the toe-in example. Despite your best efforts to creep along at low speed, the outside tire will always bear more load than the inside, and thus dictate a slightly tighter turning radius with the toe-in setting. Very cool demo!

Also, don't forget other forces like camber thrust...
__________________
Joe Chen
www.reflexracing.net
Houston, TX
Mini-Z World Champions!
Reflex Racing Blog
Reflex Racing YouTube

Last edited by ruf; 2008.10.01 at 01:22 PM.
ruf is offline   Reply With Quote
Old 2008.10.01, 02:42 PM   #15
marc
Honda Insight Racer!
 
Join Date: Oct 2003
Location: Colorado, USA!
Posts: 6,399
Send a message via AIM to marc Send a message via MSN to marc
One way to look at it is to use your feet. Look down at your feet and move your toe's inward with your heal's outward. Then try and walk a streight line and turn. Then move your toe's outward and repeat. That's how I learned it and understood it back when. Granted not exactly the same thing as wheel's, but helps explain toe-in toe-out!
marc is offline   Reply With Quote
Reply

Bookmarks

Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Toe In Toe Out...wax On Wax Off ruknd@aol.com Parts and Hop-ups 0 2004.12.20 11:09 AM
4 degrees toe in bar on Hardwood floor ratdog Parts and Hop-ups 2 2004.01.11 10:35 PM
handling on toe in bar Wedginator Parts and Hop-ups 4 2002.03.17 11:49 AM
Toe angle on mini-z + other questions Joseph Kong Beginner Questions 12 2001.12.02 07:53 AM


All times are GMT -5. The time now is 03:16 AM.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2011 Mini-ZRacer.com
Mini Inferno Sale - Up to $85 Instant Savings!
Micro-T Hop-Ups
RC18R, M18, Micro RS4, Mini-LST, TamTech-Gear, Minizilla, RC18T, RC18B, RC18MT
shop.tinyrc.com Products

more»
Tiny RC Community News
[03/22/17] MZR was on vacation, didn't... : All kidding aside, the host experienced a bit of a server meltdown last week and efforts to restore the site to a new server took longer than anticipated. The current server is temporary until - more»
[11/25/15] Did You Hear? Our Black... : Hey Racers,
We're getting started a bit early with our Black Friday sale this year.  Generally we're not supporters of retailers opening early on Thanksgiving, but in our case, we're - more»
[06/30/15] shop.tinyrc.com: Have You... : Hey All! Just a quick reminder to everyone that we post all of our shop.tinyrc.com Newletters here on the MZR Forum. If for some reason you miss them in your email inbox, you can always see the - more»
Mini-Z, Mini-Z Racer, MR-02, MA-010
M18, M18T, RC18T, Mini-LST, Mini-T, Micro RS4, XRay, 1/18, 18th scale
XMODS, XMOD, Micro Flight, ZipZaps, ZipZaps SE, Bit Char-G, MicroSizers, TTTT, Plantraco Desktop Rover, SuperSlicks, Digi Q
Mini Inferno, Mini Inferno ST, half EIGHT, 1/16, 16th scale
Epoch, Indoor Racer, 1/43, 43rd scale
E-Savage, eSavage, eZilla, e-Zilla, HPI
Robots, Bots, Bipeds, Wheeled, Manoi, Roomba, NXT, Lego, Hacking
Crawling, Crawlers, Micro, RC, Losi Mini-Rock Crawler, Duratrax Cliff Climber
Kyosho Minium, Caliber 120, Minium Forums
Mini-Z Hop-Ups, Mini-Z Parts, Mini Inferno Hop-Ups, Mini Inferno Parts, M18 Hop-Ups, M18 Parts